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SUMMARY 

This  report  descr ibes  a preliminary investigation into the use of optima, control 
theory for  the design of controls for  a supersonic inlet. In particular,  the control of a 
mixed-compression supersonic inlet is formulated as a linear stochastic optimal con- 
t ro l  and estimation problem. An inlet can exhibit an  undesirable instability (unstart) 
due to  excessive inlet normal shock motion. 
inlet program, a nonquadratic performance index is used, which is equal t o  the expected 
frequency of inlet unstarts.  The computer program developed in  this  report  determines 
optimal control lers  which minimize this  physically meaningful performance index. 

A l inear lumped parameter ,  single-input, single-output inlet model is considered. 
The disturbance considered is a white Gaussian airflow perturbation a t  the compressor  
face station. 
Gaussian white measurement noise. A Kalman f i l ter  is used to generate the est imates  
of the s ta te  variables. 
quadratic control problems (Riccati equation) using the quadratic equivalence principle. 
The variation of the performance index with shock position tolerance, plant disturbance 
level, and measurement noise level is investigated. Results are presented for  different 
levels of available control effort. 

For  the optimal control formulation of the 

The measured variable is normal shock position, corrupted by additive 

State estimate feedback gains are found by solving a series of 

I NTROD UCTl ON 

For optimum performance of present day supersonic a i rcraf t ,  it is necessary to 
provide an efficient means for  decelerating the air from supersonic to  subsonic velocity 
before i t  en te rs  the compressor  of the turbojet engine. A common method for  accom- 
plishing this  is a variable geometry supersonic inlet as shown in figure 1. The inlet 
shown is an axisymmetric mixed compression type to be used on future supersonic air- 
craft .  In normal  operation, a i r  en te rs  the inlet past  a weak oblique shock wave and is 
compressed supersonically past  the minimum a r e a  station (throat) up to the position of 
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I Figure 1. - Schsmatic of supersonic axiiymmetric inlet. 

the terminal normal shock. After the normal shock, the air is further compressed sub- 
sonically until it reaches the inlet of the turbojet engine (compressor face). For effi- 
cient operation, the inlet should maximize the recovered pressure  at the compressor  
face over a wide range of operating conditions and maintain a stable flow pattern in the 
presence of external disturbances. 

just  described and a second unstarted condition having a strong external shock system, 
subsonic flow in the initial convergent section, poor pressure  recovery, and sometimes 
oscillatory flow (buzz). The desired s tar ted condition becomes unstable and switches to  
unstart  when either of two events occur: 

(1) A decrease  in upstream Mach number causes  the throat Mach number t o  decrease  
to  one. In this  case,  a second (unstable) normal shock forms at the throat and moves 
rapidly upstream, out of the inlet. 

move upstream of the throat. Here again, the shock moves rapidly upstream, out of 
the inlet. 

The flow configuration of this  type of inlet is bistable; the desired started condition 

(2) A decrease  in compressor  face airflow causes  the terminal normal shock to  

The severe  reduction in compressor  face airflow and p res su re  occurring af ter  an  
unstar t  may cause a compressor  stall o r  combustor flame-out. In addition, the in- 
c reased  nacelle drag  on an  unstarted inlet may cause the a i rc raf t  to  yaw suddenly. Also, 
a s tar ted inlet with normal  shock too far downstream of the throat will have relatively 
poor pressure  recovery and undesirable flow distortion at the engine face. Control is, 
therefore,  required to maintain throat Mach number and shock position within acceptable 
l imits  to  provide stable, efficient inlet operation. 

The pr imary inlet control variables are overboard bypass doors  and a translating or  
collapsing inlet centerbody. Opening the bypass doors allows air to be  dumped over- 
board, causing the shock to  move downstream away from the throat. The translating 
centerbody var ies  the throat a r ea ,  thereby varying the throat Mach number. 
ation of these two control modes is used to ensure stable inlet operation in the face of 
both upstream and downstream disturbances. 

A combin- 

The inlet can encounter both random and deterministic disturbances in a typical 
I 
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flight environment. Deterministic disturbances are those such as atmospheric pressure  
changes due to  a shock wave from a passing aircraf t ,  pilot induced engine transients,  
a i rc raf t  maneuvers,  and engine compressor  stall. Disturbances which are random in 
nature a r e  those such as atmospheric gusts,  atmospheric temperature changes, combus- 
tion noise (in a duct burning fan) fed back from the engine, and aerodynamic compressor  
noise. 

Present  inlet control systems (refs. 1 and 2) have been designed to minimize system 
response to  deterministic disturbances such as ramp  or  sinusoidal changes in upstream 
Mach number and/or engine air flow rate. These systems were  evaluated by examining 
the shape of their  frequency response curves. Another approach which has been taken 
is to minimize system response to random disturbances. This  w a s  used by Bar ry  
(ref. 3) for the case where the random disturbance was atmospheric turbulence. He 
developed a method for  predicting the expected number of unstar ts  per  flight mile. 
controls were then evaluated on the basis of their  effectiveness in minimizing unstart  
frequency. 

The approach described in this  report  i s  an  extension of Bar ry ' s  work to the prob- 
lem of designing -- optimal control lers  which minimize unstart  frequency. Basically, the 
inlet control problem is formulated as a linear stochastic optimal control problem using 
Barry ' s  expected frequency of unstart  equation as the performance index. This  optimal 
design method is direct  in that it leads to  a control system which minimizes a physi- 
cally meaningful performance index rather  than some intermediate quantity such as the 
area enclosed by the closed loop frequency response plot or shock position deviation. 
This performance index a l so  leads to controllers uniquely different f rom controllers 
which, for instance, minimize shock position deviation. 

Inlet 

OPTIMAL CONTROL FORMULATION 

Ba sic Fa r m u la t io n 

Bypass door control is used to  avoid uns ta r t s  due to  inlet disturbances which occur 
a t  the compressor  face. Fast-acting bypass doors,  such as described in references 
1 and 4, have been used to  regulate against this  type of disturbance. Also, to  avoid un- 
s t a r t s  due to atmospheric disturbances, the inlet throat area must be controlled. Typ- 
ically, this i s  done by translating the centerbody, which can only be done relatively 
slowly. However, the throat Mach number responds very rapidly to  upstream (atmo- 
spheric) disturbances, due to  the fact  that flow i s  supersonic between the entrance to  the 
inlet and the throat. Thus, it is difficult to  mechanize a throat a r e a  control that wi l l  
effectively reduce unstar ts  caused by upstream disturbances. For this reason, initial 
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I Figure 2. - Single-input, single-output inlet control. 

studies have concentrated on the optimal control of bypass doors to reduce unstar ts  due 
to downstream disturbances only. 

design for this inlet terminated with a long pipe ending in a choke plate w a s  discussed 
in reference 1. For this  report ,  an  inlet t ransfer  function model w a s  obtained for the 
inlet terminated with a choke plate located at the compressor  face station. It w a s  found 
that, by curve fitting experimental frequency response data (unpublished NASA data), a 
good fi t  could be obtained over the range f rom 0 to  100 hertz using the form (Symbols 
a r e  defined in the appendix. ) 

Figure 2 i s  a block diagram of the inlet chosen for  this study. Conventional control 

The dead t ime in G(s) is character is t ic  of inlet dynamics. However, in order  to make 

(e. g. , ref. 5) ,  a finite state (lumped parameter)  model was needed. Thus, at the out- 
set ,  the dead t ime was approximated by a third-order Pad;, resulting in a sixth-order 
state variable model for  the inlet. 

I use  of the well-developed theory of l inear stochastic optimal control and estimation 

In figure 2, the disturbance to the inlet W b  represents  a random air flow perturba 
tion at the compressor  face. 
power spectral  density (psd) equal to  q. The output variable ys (shock position) i s  
measured through a noisy channel with measurement noise vs. 
to be white Gaussian with a psd of r. 

It is assumed to  be white Gaussian noise with a constant 

The noise is assumed 

The following performance index was chosen to be minimized: 

2 
ub 

J = X + k a  
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where 

and 

h 

k positive weighting factor 

expected frequency of inlet unstar ts  

U ' mean square value of bypass door flow ra te  

mean square value of shock velocity 

mean square value of shock position 

ub 

U -  
YS 

Y S  
U 

cy shock position tolerance (distance between undisturbed shock position and inlet 
thxoat) 

J w a s  selected so that the control must minimize unstar ts  X while limiting the amount 
of bypass door flow cru 

gives the expected frequency with which the Gaussian random variable ys exceeds the 
level (Y in the positive direction. is selected to  penalize 

the control variable so that the level of control effort won't exceed that available. 
tion of the control effort weighting factor k will be discussed in a la te r  section. 

assumptions must be made: (1) the inlet disturbances a r e  Gaussian, (2) the inlet dynam- 
i c s  are linear,  and (3) the controller is restr ic ted to  b e  l inear and time-invariant. 

gramming, fo r  example), the controller thereby obtained would, in general, be  nonlinear 
due to the nonquadratic nature of the performance index of equation (2). This would be 
a violation of assumption (3) mentioned in the previous paragraph and, hence, the com- 
putation of X by equation (3) would be  invalid. 
s t r ic t  the controller to  be linear and find the optimum linear,  time-invariant controller 
which minimizes the expected frequency of unstarts.  This  is essentially what was done 
in this study. 

needed to do so. 
b 

The X relation (eq. (3)) is a classical  exceedance equation given in reference 3. It 

Weighting factor k for o2 
% 

Selec- 

In order  to  write equation (3) for the expected frequency of unstarts,  the following 

If a general  approach to the optimal control problem were chosen (via dynamic pro- 

One way around this problem is to  r e -  
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It i s  known that the solution to  the l inear stochastic optimal control problem for 
quadratic performance indices dictates l inear feedback of the optimal es t imates  of the 
s ta te  variables. This  fact i s  a resul t  of the so-called separation theorem (ref. 5). The 
solution technique can be extended to systems with nonquadratic performance indices by 
employing the quadratic equivalence principle developed by Edinger, Skelton, Stone, 
Ward, and White (ref. 6). The resul t  is a linear control law which minimizes a quad- 
ra t ic  approximation to the nonquadratic performance index. The method of quadratic 
equivalence w a s  chosen fo r  u se  in the inlet control problem because it forces  a l inear 
solution. 
wel l  developed for  solving the l inear optimal control problem for  quadratic performance 
indices. 

In addition, the computer programs required a r e  those that have been fairly 

Linear Stochastic Optimal Control and Estimation Problem Solut ion 

Before dealing with the nonquadratic problem, i t  is wel l  to review the l inear sto- 
chastic optimal control and estimation problem. It can be outlined as follows (ref. 5). 
Given a plant described by 

x = A(t)x + B(t)u + w ( 4) 

where x is the state vector,  u is the control vector, and w is the plant disturbance 
vector.  An output vector y is defined as 

and a measurement  vector z is given as 

where v is the measurement  noise vector.  Both w and v are white ze ro  mean Gaus- 
sian, and uncorrelated with each other, having correlation mat r ices  defined by 

( 7 4  

(7b) E(v(t)vT(t + 7))  = R(t)6(7) 

I 6 
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A(t), B(t), and H(t) are rea l ,  possibly t ime varying, matr ices .  The initial state vector 
x(0) is assumed to be random with a covariance 

E ( u(0)xT(O'} = Po 

The problem is to minimize the quadratic performance index 

C = E - x (t ) S  x(tf) + - /" [xTQc(t)x + 2xTN(t)u + u i, f tf 2 0  

Matr ices  Sf, Qc(t), and N(t) are at leas t  positive semidefinite, and Pc(t) is a positive 
definite matrix. 

The known solution to  this  problem (using the separation theorem) i s  

where 2 is the optimal estimate of the s ta te  vector x and is generated with a Kalman 
f i l ter  described by 

$ = A(t)g + B(t)u + Ke(t)[Z - H(t)G] (11) 

The optimal control gains Kc(t) are given by 

w h e r e  S(t) is the positive definite symmetr ic  solution to  the following matr ix  Riccati 
equation: 

J 
(For simplicity, the explicit time dependence of mat r ices  A, B, etc. h a s  been dropped. ) 
The Kalman fi l ter  gains Ke(t) are given by 
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Ke(t) = P(t)H(t)TR(t)-l (14) 

where P(t) is a positive definite symmetr ic  

P = AP + PAT - 

solution to a Riccati equation, which i s  

T -1 P(H R H)P + Q 1 
P(0) = Po J 

P(t) is a l so  the covariance of the e r r o r  in the estimate i. 

plant to  minimize a quadratic performance index when the plant is subject to white noise 
disturbances. Figure 3 is a block diagram of the solution to the optimal control and es- 
timation problem showing the state est imator  and state estimate feedback. The s ta te  e s -  
timator (Kalman filter, eq. (11)) is basically a model of the plant driven by control u 
and measurement z. Signal z is compared with i, the estimated measurement,  to 
form a t e r m  which is the e r r o r  in the est imate  of the measurement. This  error is then 
multiplied by Kalman filter gains Ke and added back into the f i l ter  as a "correction" 
term.  The,f i l ter  output 2 is weighted by the control gains Kc(t) to  form the optimal 

Equations (10) t o  (15) then define the solution to the problem of controlling a l inear 

l 

I 

I 

Figure 3. - Cwnbined optimdl regulator-stdte estimator. 



control vector u. In general, t ime varying control gain matr ix  Kc(t) is calculated off- 
line by integrating equation (13) backward in t ime from t = tf to ze ro  with the initial 
condition S(tf) = Stf. Similarly, t ime varying fi l ter  gains Ke(t) are calculated off-line 

by integrating equation (15) forward in time, with the initial condition Po being the 
a pr ior i  estimate of the covariance of x. 

Constant Gain Solution 

In selecting the nonquadratic performance index (eq. (2)), one assumes constant 
mean square values for all variables,  this  implying a constant gain system. That i s ,  
controller gains for the nonquadratic problem must be t ime invariant. For the quad- 
ra t ic  problem, assuming mat r ices  A, B, H, Qc, N, and Pc are constant, control 
gains Kc are constant for  t imes  sufficiently less than tf (which can be considered very 
large). Kc is then given by 

(16) -1 T T K c = P c  (B S + N  ) 

where S iS the steady-state solution of the Riccati equation (eq. (13)). If, in addition, 
Q and R are constant matr ices ,  Kalman filter gains Ke become constant for  t ime 
sufficiently g rea t e r  than ze ro  (so that initial condition effects have died out). Ke is 
then given by 

(17) K e = P H  T R -1 

where P is the steady-state solution of the Riccati equation (eq. (15)). The optimal 
system wi l l  then have all gains (Ke and Kc) constant for  t imes  0 << t << tf. During 
this  time, all expected values are constant. 

Rewriting equation (9) as follows: 

Qcx + 2x T Nu + u T Pcu}dt 

i t  is seen that, for  tf - 03, the major contribution to  the index is the constant value of 
the integrand, obtained for  t >> 0 (after all initial condition effects have died out). 
Thus, the constant gain control derived can be said to have minimized that constant 
value given by 
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(18b) T Q C x +  2~ N U + U  

If the performance index for  the inlet problem were purely quadratic, the solution 
to the control and estimation problem would be given by equations (16) and (17). How- 
ever,  such is not the case.  Fo r  the inlet control problem, a nonquadratic performance 
index defined by equation (2) i s  to  be  minimized. 
principle of quadratic equivalence can be  used to yield a solution which is a linear feed- 
back of s ta te  es t imates  identical to  that of f igure 3. 

The following section wi l l  show how the 

I m p le men t ing Quad rat ic Equ iva le nce 

For the quadratic problem, the necessary condition for  the existence of a stationary 
point (such as a minimum) is that the variation of the performance index equal zero. 
F i r s t ,  define the sca l a r s  u 4 ub, w e wb, and y 2 ys. Then, taking the variation of 

I 

I equation (18b) and setting it equal to zero,  the following equation can be obtained: 

The variation of the nonquadratic performance index can be put in the form of equa- 
tion (19) by use  of the quadratic equivalence principle. 
infinite time, l inear,  quadratic problem just  discussed can be adopted. 
as follows. 

Then the known solution f o r  the 
I This  can be done 
, 

Fi r s t ,  the variation of J (eq. (2)) is se t  equal to  zero; that is, 

2 Then equation (20) is expanded in t e r m s  of o2 , CJ? , and CJ giving 
y s  ys  “b 

I where W1 and W2 are defined as 

10 
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W2 = 47rku ys  0. y s  e x p k )  

In order  to  compare equation (21) with equation (19), i t  is necessary to f i r s t  ex- 
r) r) 

p r e s s  ue and d in t e r m s  of x, y, u, A, B, and H by using equations (4) and (5). 
Y S  Y S  

The mean square value of the output ys written as a n  expected value, is 

but 

thus, 

Since 

u2 = .{YE) 
YS 

ys = Hx 

j r s  = Hk 

then 

Thus, the mean square value of GS becomes 



The nature of the plant must be such that the product H W b  i s  equal to zero; other- 
wise, 0 .  would be infinite and, hence, i t  would be impossible to minimize J .  (This 

requirement is satisfied if the plant t ransfer  function has  more  poles than zeros.  ) With 
Hwb = 0, 

YS 

since U b  is a scalar.  
2 Also, ou , as an  expected value, can be written 
b 

Now, u2 , 02 , and a2 f rom equations (25), (29), and (30) can be substituted into 
ys ys "b 

equation (21) to  obtain 

Collecting t e r m s  resu l t s  in equation (31) becoming 

HB)ub} + 6E(ub(B T T T  H HB + W2)ub} = 0 

Compare t e rm by t e r m  equation (32), obtained from the nonquadratic performance 
I , index J, with equation (19), obtained from the quadratic performance C, . The following 
I relations can then be made: 

T T  T Qc = A H HA + WIH H 

T T  N = A  H HB 

P c = B  T T  H H B + W 2  

I 

i (33) 
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The nonquadratic problem can now be solved by solving the quadratic problem (eqs. 
(13) and (15)) with Qc, N, and Pc defined by equation (33), and P and S se t  equal to 
zero.  Equivalence, however, only is assured  at the optimum. At this point W1 and 
W2 must  satisfy equations (22a) and (22b) such that quadratic equivalence i s  maintained. 

2 Since W1 and W2 are defined in t e r m s  of mean square values such as o2 

the technique by which these values are determined is discussed in the next section. 

and 0 -  , 
Y S  Y S  

Mean Square Values 

The mean square values u2 and 02 are functions of P, the covariance of the 
Y S  Y S  

e r r o r  in the estimate of the states, and X, the covariance of the states.  
e r r o r  in the est imate  is 

Since the 

e 6 2 - x  (34) 

the covariance of x can be written as 

since E(;teT} = 0. Similarly, 

X = k + P  

where k is derived in Bryson (ref. 5, p. 417) as 

k = (A - B K , ) ~  + ?(A - BK,) T + K ~ R K ,  T (37) 

Using this  value for  k and obtaining P from equation (15),  X becomes 

(38) x = (BK,)P + P ( B K ~ ) ~  + Q + (A - BKJX + X(A - BK,) T 

For  the inlet problem, only the steady-state value of X is needed; thus, X = 0 and 
equation (38) becomes 

( B K ~ ) P  + P ( B K ~ ) ~  + Q + (A - B K ~ ) X  + X(A - B K , ) ~  = o (39) 
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the steady-state covariance matr ix  equation. 
Now, a2 and a2 m u s t b e  expressed in t e r m s  of P and X. From equation (25), 

Y S  Y S  

(40) a2 = E{X T T  H HX} = E(HXX T T  H } =  H E { ~ T ) H T =  HXH T 
YS 

II I siIALilar manner,  equation (28) can be rearranged in t e r m s  of E{xxl'}, E (xu:}, and 
E { 'bUb '} giving 

But it can be shown that 

E(,,,.} = -(X - P)Kc T 

and 

~ { u ~ u b T )  = Dub 2 = K,(X - P)K: = K,?K, T 
(43) 

Substituting these resu l t s  into equation (41), a2 becomes 
Y 

(44) 
T T  T T T  T T T  a? = HAXA H - 2HA(X - P)KcB H + HJ3Kc(X - P)KcB H 

Y S  

Thus W1 and W2 can be calculated as functions of X and P using equations (40) 
and (44). In addition, mean square control effort a2 
by-equation (43). 

is a simple function of 2, given 
'b 

This  completes the derivation of the equations necessary to design an  optimal inlet 
I control system t o  minimize unstarts.  Next, the solution of these equations wi l l  be  de- 

s c  r ib  ed. 

I CONTROL COMPUTATION PROCEDURE 

Firs t ,  the estimation problem w a s  solved, yielding a se t  of estimator gains Ke. 
Then the quadratic control problem w a s  solved for  a number of t r ia l  (W,,W,) pa i r s .  

14 
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The solution to each quadratic problem Kc w a s  used with the Ke previously determined 
to compute the mean square values of the s ta te  vector. 

y s  y s  'b 
were calculated. 
these data were  scanned off-line to  determine optimum points. This  w a s  done by f i r s t  
finding points of minimum J for  each value of k. As a check, an alternate method was 
used. This  was to find points for  constant k where the assumed W1 w a s  sufficiently 
close to the calculated W1 and the assumed W2 was close to  the calculated W2. The 
accuracy with which the W1 and W2 equations (eqs. (22a) and (22b)) were satisfied 

2 From this, u2 , 02 , and u 

For  a range of k's, J, A ,  W1, and W2 were then calculated. All 

Read the  following: 
(I)  Plant coefficient matrices A, B, and H 
(2)  Noise PSD's Q and R 
(31 Set of shock position tolerances 5 

(4) Weight W 2  
(5) Set of t r i a l  values of W1 
(6) Set of control weights k 

Compute Kalman f i l ter gains 

i - Solve steady- 
state Ricc i t i  Compute quadratic weighting 

matrices Qc, N, and Pc 

1 

I 
Solve steady-state state co- 
variance matrix equation 

Compute u2 u$,, and u 2  I Ys', 'b I 
I 

Compute W1, W2, A, and J 
(nonquadratic performance index) 

1 

I 
Pr in t  J, A, W1, and w2 

I Read nevi Vul 

7 
Figure 4. - Control computation procedure flow chart. 
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w a s  a function of the number of trial pa i rs  (W1,W2). That is, finding the optimum more 
accurately required more pairs.  

The digital computer program used in solving the inlet control design problem i s  
outlined in figure 4. Inputs to the program a r e  plant coefficient matr ices  A, B, and H, 
noise spectral  densities Q and R, trial quadratic weights W1 and W2, mean square 
control weight k, and output variable (shock position) tolerance a. 

requires  the steady-state solution of a Riccati equation. (Note that the Kalman fi l ter  
gains need only be calculated once for a given pair  of noise psd’s. ) Next, the control 
weighting matr ices  Qc, N, and Pc are found. 
lem is then solved for the optimum feedback gains, where again a Riccati equation is 
solved. The mean square system behavior is then determined by solving the steady- 
state state covariance matr ix  equation. Then the mean square values of y, $, and u 
c a n b e  found. 
which a r e  all printed out. 

one for the steady-state state covariance matrix equation. The steady-state Riccati 
equation subroutine used the negative exponential method (ref. 7). For the inlet prob- 
lem, this method proved much fas te r  than a direct  fifth-order Runge-Kutta integration. 
The s ta te  c,ovariance matr ix  equation w a s  first solved by integration. However, since 
only the steady-state solution w a s  needed, it w a s  found that a fas te r  method w a s  to t rans-  

of the  so-called Lyapunov matr ix  equation. 
a number of possible alternate methods for  solving the Lyapunov equation (ref. 8). 

The f i r s t  s tep in the solution procedure i s  to compute the Kalman fi l ter  gains, which 

Using these weights, the control prob- 

The final calculations, using o2 , 02 , and o2 a r e  W1, W2, A ,  and J ,  
ys  ys  5 3 ’  

The two major  subroutines used a r e  one for the steady-state Riccati equation and 

I form equation (39) t o  a set of n(n + 1)/2 l inear equations. Equation (39) is a l so  a form 
The solution method chosen w a s  only one of 

RESULTS AND DISCUSSION 

I n t roduct ion 

The preceding synthesis procedure w a s  applied to develop an optimal estimator and 
control gains for the inlet described in equation (1). To do this, a sixth-order inlet 
model w a s  obtained by combining a third-order dead t ime approximation with the third- 
order  t ransfer  function of equation (1).  

Paramete r s  obtained from the curve fit using G(s) given by equation (1) a r e  as fol- 
lows: 



KI = 5. 59 cm/(kg/sec) 

a = 210 rad/sec 

b = 80 rad/sec 

wn = 365 rad/sec 

< = 0.30 

7 = 0.004 sec  I 

For a dead t ime of 0.004 second, the third-order Pad; is 

(45) 
-0.004 s - - -5. 333x10-lo s3 + 1. 60X10-6 s2 - 2. OX10-3 s + 1 

5. 333x10-lo s3 + 1. 60X10-6 s2 + 2. OX10-3 s + 1 
e 

Substituting for  the dead t ime in equation (1) from equation (45) and using the aforemen- 
tioned constants, the sixth-order inlet t ransfer  function becomes 

y (') 

wI(s) 

(5 .59)(2.001~10~~)( -2.  5 3 7 ~ 1 0 - ~ '  s4 + 7.083~10-' s3-- 7.920~10-~ s2 + 2 . 7 6 0 ~ 1 0 - ~  s + 1) 

s6 + 3 . 3 0 ~ 1 0 ~  s5 + 4. 80X106 s4 + 3.460~10' s3 + 1. 160X1012 s2 + 3 . 2 3 0 ~ 1 0 ~ ~  s + 2. O01x1016 
(46) G ( s )  = 2 = 

Using equation (46), the A, B, and H matr ices  for the s ta te  variable representa- 
tion were  conveniently obtained in phase variable form. But to improve the accuracy of 
the Riccati equation solutions, the problem w a s  t ime scaled by 200 to 1, resulting in the 
following A, B, and H matrices:  

A =  

0.0 0.0 1.0 0.0 --- --- 
1.0 0.0 

- -- 1.0 

--- --- --- 

--- 1. 0 

1. 0 --- --- 

-312.7 -1009 -725.0 -432. 5 -120.0 -16. 5( 
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BT = [0, 0,  0, 0, 0, 1. O] 

H = {5. 59 [cm/(kg/sec)]) - c312.7, 172.6, -99.06, 17.71, -2.269, 0.01 

! The plant disturbance vector w a s  defined as 

and its correlation matrix was 

I where 

& =  

0 0 0 0 0 0  

0 -  - - 

0 -  

0 

0 

0 -  - q  - - 

and q is the psd of wb. 
fo r  a plant noise psd of 

Solutions to  the estimation and control problem were obtained 

q = 1 . 0 3 ~ 1 0 - ~  (kg/sec)2/(rad/sec) 

and two typical values of measurement noise vs psd's 

r = 3. 22X10-5 and 3. 22X10-6 cm2/(rad/sec) 

Note that, since wb and vs both have flat spectra  (their  psd's not being functions 
of frequency), q and r do not change with t ime scaling. 
start frequency) in real t ime units, cr2 

Actually, only cr needed rescaling. This is because 

However, to compute h (un- 
2 and cr. had to  be expressed in real time. 

YS Y S  2 
Y S  

18 
I 



2 and for 7 = yt, d/dt = y(d/d7), and cr- (t) becomes 
Y S  

2 2 Thus, for  y = 200, cr (7) from the program was  multiplied by (200) before h w a s  
calculated. Y S  

A Kalman f i l ter  w a s  designed for  each q, r pair. Then a family of optimum con- 
The members  of the family differ t ro l l e r s  w a s  designed by varying control weight k. 

in that although all are optimum, each requires  a different r m s  value of the control 
variable CJ . Knowing uU is important because i t  dictates how large the control 

actuator capacity must be. Conversely, if the maximum available control variable level 
is known, the controller can be designed to avoid control saturation. 
desirable  f i r s t  because, if it occurs, the system becomes nonlinear and the whole opti- 
mum controller design procedure is in question. In addition, reliability is decreased 
if control saturation occurs. For  example, in the case of the inlet, high deceleration 
forces  a r e  imposed on the bypass doors  whenever they a r e  driven full open o r  closed, 
which could lead to  premature actuator failure. With these facts  available, the resu l t s  
of the design program can be used to  select  a controller that wi l l  both be optimal and 
avoid saturation. 

ub b 

Saturation is un- 

Shock Position Tolerance Sensitivity 

The calculated optimal inlet control problem solutions can best  be displayed by 
relating unstarts,  control effort, and shock position tolerance for a family of optimal 
control systems. Figure 5 shows how well one family of optimum controllers is able 
to  minimize unstarts. The expected frequency of unstar ts  X is plotted as a function of 
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b' 

Fi ,ur? 5, - Expe:tx i r e q u m c y  sf u n c t a r t s  as a f u n c t i o n  of b y p a s  flow fo r  v a r i o u s  shock po5 i t i on  to lerancps. Powpr 
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CI s i i o t k  irocit on m a s u r e m e n t  noise r i 3. 21x10-5 cm21rad/sec; total  i n le t  ~ I O W  rate viI ~ 16.2 k i l og rams  pe r  
secontl 
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r m s  bypass flow rate ou 

value of uU corresponds to a different controller (Kc gains), using the same Kalman 
b 

filter (Ke gains) to generate the state estimates.  Open loop values of X fo r  different 
a's are shown along the vertical  axis  so  that the improvement gained by optimal con- 
t rol  can be seen. Note that, as u goes to zero,  the curves asymptotically approach 

their  open loop values, as would be  expected. Also, as CY increases ,  h decreases  for  
both closed and open loop cases.  

is by comparing r m s  values. However, for  the inlet problem, all disturbances have 
been assumed white and thus have infinite r m s  values. 
noise are assumed t o  be not white but colored, their  mean square values become finite. 
Then various signals can be compared to them on an r m s  basis. For  the following dis-  
cussion, assume that the spectral  densit ies of W b  (compressor face disturbance) and 
vs (shock position measurement noise) are flat to  2000 radians per  second and fall off 
on a log-log plot at a two-to-one slope thereafter (first-order coloring). With such a 
high rolloff frequency, the noise wi l l  still appear essentially white to the inlet. 
mean square  value of wb can be calculated by integrating the psd of W b .  

o rder  coloring, mean square value of W b  tu rns  out to be simply (ref. 9) 

fo r  a typical range of shock position tolerance a. Each 
b 

ub 

A more  conventional way of contrasting open and closed loop system performance 

But i f  plant and measurement 

The 
For first- 

2 qOc =- 
wb 2 

(49) 

where q i s  the zero-frequency value of the psd and wc is the corner  (rolloff) f re -  
quency of the coloring. 

The inlet being used has  a nominal captured flow rate wI of 16.2 kilograms per 
second at Mach 2.5. For a q of 1 . 0 3 ~ 1 0 - ~  (kg/sec) /(rad/sec) and wc of 2000 radians 
p e r  second, the mean square value of wb is 1.02 kilograms per  second or 6 .3  percent 
of nominal inlet ,captured flow. The open loop r m s  shock excursion for  this  disturbance 
level is then 1.65 centimeters. For a low frequency measurement noise psd level of 
3. 21X10-5 cm /(rad/sec) (shown in fig. 5), the r m s  noise-to-signal ra t io  for  open loop 
shock position is about 11 percent. With control, r m s  shock position ranges from 
1.65 cent imeters  down to 1. 14 cent imeters  for the maximum value of uu shown. Al- 

though this  change is rather  small ,  the corresponding change in > i s  large - about three 
o rde r s  of magnitude. This  is because o ( r m s  shock position) appears  in the expo- 

nential t e rm in A ,  thus h is quite sensitive to it. 

2 

2 

b 

YS 

Note that as shock position tolerance increases ,  for  a constant value of u the 
Ub' 

difference between closed and open loop A's increases.  This indicates control i s  more  
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effective for  large values of shock position tolerance. But la rger  A'S cause lower inlet 
p ressure  recovery; thus there  i s  a definite limit as to how large CY can be. A trade-off 
then exis ts  between X and CY (p ressure  recovery).  

The other main control design consideration is what value of au i s  acceptable; 
b 

that is, how large can a be without having saturation occur. There is no completely 

satisfactory answer to this  question. 
designed for  a specific au , drive it with the desired random disturbances, and see  

whether or not saturation occurs. Newton, Gould, and Kaiser (ref. 10) suggest, as a 
rule  of thcmb, a be  no more  than one-third of the saturation value to minimize the 

possibility of control variable saturation. 
For  the inlet studied, maximum bypass flow i s  about equal to nominal capture flow. 

Using Newton's rule,  a suggested value of a would be  5.4 kilograms per second. As 

a design example, assume that it is desired that mean distance between unstar ts  be  
lo6 kilometers. 
uns ta r t s  pe r  second. 

shock position tolerance should be about 8 cent imeters  (see circular  data point on fig. 5). 
Alternately, the inlet designer may insist  some maximum value of CY not be exceeded 
so that sufficient p re s su re  recovery is insured. In this  case,  f igure 5 can b e  used to 
predict  the expected distance between unstar ts  for  some maximum u and CY. 

ub 
The only sure solution i s  to  simulate the system 

b 

'b 

ub 

For  a c ru ise  Mach number of 2. 5, this means that X must be 7. 5 ~ 1 O - ~  
Using figure 5, for uu chosen to  be 5 .4  kilograms per second, 

b 

'b 

Measurement Noise Level Sensitivity 

In addition to shock position tolerance, other parameters  which strongly influence 
the expected frequency of unstar ts  are plant noise psd q and measurement noise psd r. 
This  follows f rom the fact that the rat io  of q/r  dictates the Kalman filter gains. The 
change in filterf character is t ics  alters mean square values and thus X changes. Plant 
noise psd q is usually specified by the environment and cannot usually be changed by 
the designer. However, r is partly a function of the noise of the sensor  and i t s  asso-  
ciated instrumentation amplifier so the designer may be  able to influence this variable. 

(solid lines) f rom figure 5 for  (Y = 6.60, 7.62, and 8.64 cent imeters  plus curves  (dashed 
lines) fo r  lower measurement noise (where r is decreased by a factor of ten). The 
r m s  level of the low measurement noise is 3. 5 percent of open loop shock position r m s  
compared to  the 11 percent mentioned previously for the high measurement noise case.  
Measurement noise psd r has  a strong effect on A ,  especially at higher r m s  control 
levels. 

Figure 6 i l lustrates  the effect a variation in r has on A. Plotted are three curves 

For  example, if, as in the previous example, a 10-6-kilometer-per-unstart 
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10 ~ 

Root-mean-square bypass flow rate, kqisec 

F i l u r :  6. - Expecteo irequency of u n s t a r t s  as a f u n c t i o n  of bypass flow fu r  various shock pos i t i on  to le rance r  and  
" b' 

i;i"asurument n o i j e  levels. Power spectral  dens i t y  of compressor face d i s tu rbance  flow rate q = 1 . 0 3 ~ 1 0 - ~  
(k!: .eT1*iradisec; total  inlet flow ra te  w~ = 16.2 k i l og rams  p e r  Tecond. 
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figure i s  desired,  i t  can be  achieved with (Y of about 7 . 4  centimeters instead of 8 cen- 
t imeters  if measurement noise is low. This  means reliability can be held constant 
while pressure  recovery is increased, if r can be  reduced. Thus benefits can be 
gained by designing low noise t ransducers  and amplifiers since they can lead to a 
smaller  r. 

C ONCLU DING REMARKS 

This  report  has described formulating the problem of controlling a supersonic inlet 
as an  optimal control problem. A physically meaningful nonquadratic performance in- 
dex, the expected frequency of unstarts,  was used in the formulation. A single-input, 
single-output inlet control case  w a s  solved via quadratic equivalence by solving a series 
of quadratic estimation-control problems. The method provides a straightforward pro- 
cedure for  determining a set of l inear feedback controls which minimize the nonquadra- 
tic performance index. Using this  method for  control design, the expected frequency of 
inlet unstart  can be minimized. The effects of measurement noise and shock position 
tolerance were shown to have a large influence on the performance index. 

assuming a suitable analytical model is available, control of both bypass doors  and 
throat area, with downstream and upstream disturbances, can be included. 
can be made to  allow coloring of both plant and measurement noise. The performance 
index can be expanded to allow for  more  than one mode of unstart. Also, more  practical  
considerations can be introduced into the problem, such as how to  minimize sensitivity 
of the state est imates  to inaccuracies in the inlet model and prevent consequent degrada- 
tion in performance, inclusion of actuator dynamic limitations, use  of other available 
measurements  (such as compressor  face pressure)  to  improve performance, techniques 
for  simplifying the Kalman filter, and ways to handle dead time directly without intro- 
ducing Pad; approximations. 

The theory used in this  repor t  can be extended to  multivariable systems. Thus, 
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APPENDIX - SYMBOLS 

A 

a 

B 

b 

C 

c1 

E{ 1 
C 

e 

a s )  
H 

J 

KC 

Ke 

KI 
k 

m 

N 

n 

P 

pC 

Q 

QC 

R 

r 

S 

system matrix,  n X n 

t ransfer  function zero,  rad/sec 

control matrix,  n X c 

t ransfer  function pole, rad/sec 

quadratic performance index 

t ime- invariant quadratic performance index 

integer, number of control inputs 

expected value of 

e r r o r  in s ta te  vector estimate, n X 1 

inlet t ransfer  function, cm/( kg/sec) 

measurement matrix,  m X n 

nonquadratic performance index 

control gain matrix, c X n 

estimator gain matrix,  n X m 

inlet gain, cm/(kg/sec) 

positive weighting factor 

integer, number of measurements 

quadratic weighting matr ix  on state control, n x c 

integer, number of s ta te  variables 

solution of estimator matr ix  Riccati equation, n X n 

quadratic weighting matr ix  on control, c X c 

initial value of P, n x n 

power spectral  density matr ix  of plant disturbance, n X n 

quadratic weighting matr ix  on state,  n X n 

power spectral  density of wb, (kg/sec)2/(rad/sec) 

power spectral  density of measurement noise, m X m 

power spectral  density of vs, cm2/(rad/sec) 

solution of control matr ix  Riccati equation, n X n 
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sf 
S 

I t 

Ub 
l v  

S 
V 

w1 

w2 
W 

Wb 

wI 
X 

, h 

I X 

X 

A 

X 

Y 

YS 

Z 

A 

Z 

zS 

CY 

: r 
h 

2 
O"b 

terminal quadratic weighting matrix,  n x n 

Laplace variable, sec-'  

t ime 

final time 

control vector, c X 1 

control bypass door flow ra te ,  kg/sec 

measurement noise vector, m X 1 

shock position measurement noise, cm 

equivalence coefficient 

equivalence coefficient 

plant disturbance vector, n X 1 

compressor face disturbance flow rate,  kg/sec 

total inlet flow rate, kg/sec 

covariance matr ix  of x, n x n 

covpiance  matr ix  of x, n x n 

s ta te  vector,  n X 1 

estimate of s ta te  vector,  n x 1 

output vector,  m X 1 

shock position, cm 

measurement vector,  m X 1 

estimated measurement vector,  m X 1 

measured shock position, cm 

shock position tolerance, cm 

time scaling factor 

first variation of 

delta function 

damping rat io  

expected frequency of unstar ts ,  unstarts/sec 

h 

mean square bypass flow rate ,  (kg/sec) 2 
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2 
Wb 
2 

0 

D 
YS 

Y S  

2 
0 .  

7 

*C 

'"n 

2 mean square disturbance flow rate ,  (l<g/sec) 

2 mean square shock position, cm 

2 mean square shock velocity, (cm/sec) 

time, sec 

inlet dead time, sec  

noise cutoff frequency, rad/sec 

natural  frequency, rad/sec 

Super scripts:  

T matr ix  transpose 

differentiation with respect  to t ime 
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